HCIL-2016-09

Du, F., Plaisant, C., Spring, N., Shneiderman, B.
To appear in Proceedings of the IEEE Visual Analytics Science and Technology (2016)
HCIL-2016-09
Recommender systems are being widely used to assist people in making decisions, for example, recommending films to watch or books to buy. Despite its ubiquity, the problem of presenting the recommendations of temporal event sequences has not been studied. We propose EventAction, which to our knowledge, is the first attempt at a prescriptive analytics interface designed to present and explain recommendations of temporal event sequences. EventAction provides a visual analytics approach to (1) identify similar records, (2) explore potential outcomes, (3) review recommended temporal event sequences that might help achieve the users' goals, and (4) interactively assist users as they define a personalized action plan associated with a probability of success. Following the design study framework, we designed and deployed EventAction in the context of student advising and reported on the evaluation with a student review manager and three graduate students.
Return to Main TRs Page